
Chapter 12: Memory Management

Notes

 The standard changes the old way ‘new’ used to work in which it returned NULL
if the allocation failed. If ‘new’ fails under the standard, it throws an exception of
type ‘std::bad_alloc’, making a NULL check pointless. The standard defines a
way to use ‘new’ without the possibility of exception by passing ‘nothrow’: new
(nothrow) object; Obviously, pre-standard implementations of C++ do not
support ‘nothrow’ so you really can’t win if you want true portability.

 POD (Plain Old Data) objects are those who do not need a constructor to be
properly initialized. Such as primitive types or classes with primitive data. They
can be used without initializing them. Non-POD objects must be initialized
properly before they can be used. This is where ‘new’ excels over ‘malloc’
because it automatically calls the constructor. Of course, if you use ‘malloc’ to
allocate memory for classes then you’re asking for trouble.

 Three categories of storage: automatic, static, and free (dynamic).
 ‘new’ and ‘delete’ are considered, confusingly, both operators and functions.

They boil down to implicit implementation-dependant functions.

Introduction

	Chapter 12: Memory Management
	Notes
	Introduction

